21.10.2020 |

Change the food system - reconnect humans and nature, report argues

Infographics from the new report (Photo: RtFNWatch Supplement)

Changing the dominant food system is indispensable in order to reset our relationship with nature and overcome today’s ecological crises, according to the new report “Right to Food and Nutrition Watch”. This year’s edition was published ahead of World Food Day on October 12th by “The Global Network for the Right to Food and Nutrition”, an initiative of 49 civil society organisations and social movements. The authors argue that past and current policies have treated humans and the rest of nature as two separate and independent spheres. This artificial separation has led to domination and exploitation of the natural world by humans with dire environmental and social consequences, such as the destruction of ecosystems, greenhouse gas emissions and the expulsion of communities from their lands. In order to tackle the ecological crises, it is therefore essential to reconnect nature and human rights. And the authors highlight that food, where our connection with the rest of the living world is most evident, is the perfect starting point for doing so. The articles in the 2020 edition of the Watch call for an overhaul of how we produce, distribute and eat food – if we are to regain control and radically transform our societies – but also, of how we collectively resist the exploitation of nature.

The first article by Philip Seufert from FIAN International, a human rights organisation, looks at the aforementioned separation of humans from the rest of nature. He argues that this separation is central to the deep ecological crises that the world is facing and which manifest most strongly in human-made global warming as well as the dramatic loss of biological diversity. He warns that both climate change and the current mass extinction will deeply affect human societies because we cannot escape from these massive consequences. The author says that the current COVID-19 pandemic is yet another development which forces us to reassess our relationship with the rest of nature. The separation of human societies from the rest of nature is also reflected in a largely disconnected development between international human rights law on the one hand, and environmental law on the other. Seufert focuses on how human rights instruments such as the “UN Declaration on the Rights of Indigenous Peoples” and the “UN Declaration on the Rights of Peasants and Other People Working in Rural Areas” could better clarify the human-nature relationship and advance the protection of local communities as custodians of ecosystems.

In the second article, Hernando Salcedo Fidalgo from FIAN Colombia looks at the links between the coronavirus pandemic and corporate food patterns: “It is evident that today’s societies, and their current food practices, have contributed – through so-called ‘modern food systems’ – to the biodiversity crisis and to the increased risk of existing and new zoonotic diseases, such as the COVID-19 pandemic. Ecosystem fragility has facilitated the transmission of infections across animal species, as well as of zoonoses from animal species to human beings and vice-versa.” The author says that beyond the mainstream scientific response that centers on medication and vaccines, other solutions are needed. The article puts forward an exit strategy to the crisis via six proposals that build on the notion of “food agency”. One of them is to leave behind the corporate food model. “This is only possible through peasant, Indigenous, family and community agriculture, and agroecology led by women, who have demonstrated their capacity to feed the world,” writes Salcedo Fidalgo. Another proposal is: “Defend our commons, such as ‘real’ food, water, space, and biota, to ensure they are exchanged and shared, outside market interests.”

The Watch also includes an interview with Marta Guadalupe Rivera Ferre, director of the Chair in Agroecology and Food Systems of the University of Vic. She participated in the International Assessment of Agricultural Knowledge Science and Technology for Development (IAASTD) and was one of the lead authors of the chapter on food security in the Intergovernmental Panel on Climate Change (IPCC) “Special Report on Climate Change and Land” (see also the link to her chapter in the book “Transformation of our food systems” at the end of this text). Her chapter in the IPCC Special Report which was published in 2019 addresses agroecology, but only in the context of food security. “We looked at food security, in all its dimensions, and how they are impacted by climate change, as well as how food systems impact climate change in terms of greenhouse gas emissions. Then, we had discussions on synergies and trade-offs, where we talked about agroecology,” she told interviewer Katie Sandwell. “We wanted to show how some agricultural and agroecological practices, like capturing organic matter in the soil, intercropping, crop rotation, etc. can contribute to both mitigation and adaptation.” The authors' aim was to demonstrate that if the focus is put on agroecology, a more integrated response to climate change can be achieved. (ab)

19.10.2020 |

Double aid and focus on smallholders to end hunger, Ceres2030 says

Investment in extension services, particularly for women, is needed (Photo: CC0)

Donor governments could help end hunger by 2030, double smallholder farmer incomes and protect the climate by doubling the amount of aid given for food security and nutrition each year, new research shows. According to the findings of the international research consortium “Ceres2030”, an additional investment of $14 billion from donors and $19 billion from affected countries on average each year between now and 2030 could lift 490 million people out of hunger, reducing the prevalence of undernourishment below 3% in every country worldwide. The scientists also found that agricultural interventions are more effective with a population that enjoys at least a minimum level of income and education and has access to networks and resources such as extension services and robust infrastructure. “Ceres2030: Sustainable Solutions to End Hunger” is a joint 3-year project by the International Institute for Sustainable Development (IISD), Cornell University, and the International Food Policy Research Institute (IFPRI). The results were published on October 12th in ten articles in four different journals of the “Nature” family, authored by 78 scientists, researchers and librarians from 23 countries. Among the main funders of Ceres2030 is the Bill and Melinda Gates Foundation and the initiative already earned criticism at its launch for pushing an agribusiness agenda and its focus on productivism. The Ceres2030 “Evidence Adivsory Board” includes scientists who are linked to institutions such as the Rockefeller Foundation, the Alliance for a Green Revolution in Africa (AGRA) and others.

The Ceres2030 team produced two inter-linked pieces of research. First, they analysed over 500,000 reports and articles from the past 20 years of agricultural development literature, using artificial intelligence. The evidence syntheses answered eight key research questions covering areas such as water scarcity and employment for the future. Second, the researchers created a model to show how much it would cost to achieve three targets of the second Sustainable Development Goal (SDG 2), namely ending hunger (Target 2.1), doubling the incomes and productivity of small-scale producers (Target 2.3), and producing food sustainably and resiliently (Target 2.4). The model assessed what types of interventions governments should prioritize, and when (and where) money should be spent, in order to end hunger as cost-effectively as possible. The researchers concluded that $33 billion a year will be needed in additional funding in the period up to 2030. Of the $14 billion required from donors, $8 billion should be spent in sub-Saharan Africa, $4 bn in other low- and middle-income countries, and the remainder on global research and development projects. They total amount was also split into three categories of interventions: $9 bn should be spent “On the farm” for measures such as training for farmers, $2 bn should be directed at what the researchers termed “Food on the move”, i.e. measures which ensure that food can get from the farm to market, through investments in storage, transport, and other infrastructure. The remaining $3bn should be used to empower the excluded.

The authors set out 10 key recommendations for donor governments, drawing on both the evidence syntheses and economic modelling, and split across the three categories of interventions. In the “Empower the Excluded” category, the first recommendation is to support participation in farmers’ organizations. The research showed that membership in a farmers’ organization was associated with positive effects on income in 57% of the cases reviewed. However, the poorer farmer are, the less likely they are to join an organization because fees to join farmers’ organisations are a barrier for poor households. Second, the authors recommend more investment in vocational programs for rural youth that offer integrated training in multiple skills because vocational training can help increase employment levels and wages. Third, social protection programs should be scaled up in order to help create a bridge for people living in poverty to find productive jobs. “Although expensive, well designed programs, given sufficient time, can help poor people into productive work—for example by providing skills training, access to credit, or guaranteed employment alongside food or cash payments. Social protection has played a critically important role in limiting suffering during crises, including for people unable to work due to the COVID-19 pandemic,” Ceres2030 informs on their website.

Other recommendations focus on interventions “on the farm” and on smallholders. “Perversely, the very people whose livelihoods depend on food and agriculture are among the most likely to experience hunger. Small-scale food producers and workers and their families are among those most often left out of economic growth, technological change, and political decision making,” the report summary reads. Recommendations include investment in information and training, particularly for women, to increase the uptake of new technologies. The report summary does not specify what kind of technologies are meant. In addition, the authors say that it must be ensured that new environmentally-friendly farming methods are also economically viable, arguing that incentives that also included short-term economic benefits were more successful. Next, they call for the adoption of climate-resilient crops by providing extension services. The article about this topic includes much talk about "the adoption of improved agricultural production technology” and “climate-smart agriculture”. Next, the authors recommend to increase research on how to help small-scale producers in water-scarce regions. They found that nearly 80% of small-scale farms in developing countries are in water-scarce regions and useful options to improve the quantity and quality feed are being overlooked, such as better support for the use of crop residues. Therefore, their recommendation is to target improvements in the quantity and quality of livestock feed to small and medium-sized commercial farms.

The last two recommendations are related to the “Food on the Move” category. “In addition to growing our food, producers must also store it and transport it to market. Our research looked at interventions that are effective at reducing post-harvest losses for 22 food crops, with a focus on Africa and South Asia,” the Ceres2030 team wrote. They found that airtight containers, simple improvements in handling practices (such as choosing the right time to harvest), and good drying and harvesting practices reduced the waste of cereals and pulses. They also said investment in the infrastructure, regulations, services and technical assistance is needed to support small and medium-sized enterprises that supply or buy from small-scale farmers. The scientists highlight that governments have 10 years until 2030: “The sooner the investments are made in the 2030 Agenda, the less it will cost the public purse and the more sustained the outcomes are likely to prove.” Moreover, there is a further reason for urgency: the need to act now to limit irreversible damage to the earth’s ecosystems. For the environment, too, waiting means foreclosing options, some of them permanently, they explain. “Ceres2030 was set up to show governments what they need to do to take back control and realize their bold agenda. We’ve provided the evidence. Now donors and governments need to act,” the authors conclude. (abe)

24.09.2020 |

New book calls for transformation of our food systems

Cover of the book “Transformation of our food systems - the making of a paradigm shift”

The COVID-19 pandemic exposes sharp injustices and system wide failures of today’s prevailing food and agriculture systems - injustices that had already been accelerating over the past decade, which has proven to be the most destructive period of food production and consumption in modern history. In their new book “Transformation of our food systems - the making of a paradigm shift”, 40 international experts describe the highlights and trends in food production since 2009, when the ground-breaking IAASTD report was published, starting a paradigm shift in the perception of the global food system.

Will COVID-19 and its impacts on world food systems catalyse a real transformation of highly dysfunctional and destructive practices all along the food chain? “Business as usual is not an option” was the provocative message of more than 400 authors of the UN- and World Bank-led International Assessment of Agricultural Knowledge, Science and Technology for Development, published in 2009. It is probably still the most comprehensive assessment of global agriculture. One decade later there seems to be worldwide agreement amongst most international scientists, politicians, civil society and businesses, that our food systems are in urgent need of a fundamental transformation in order to withstand the enormous challenges of today and tomorrow. The climate and biodiversity crises, unprecedented exhaustion of natural resources, rising malnutrition and its health impacts are amongst the most pressing reasons for this. This past decade was the most destructive period of food production and consumption ever – not only with respect to ecosystems, but also the social and cultural fabric of rural communities around the globe.

In their book “Transformation of our food systems – the making of a paradigm shift”, 40 eminent food system experts, most of them authors and review editors of the initial IAASTD, have now taken stock of the developments of global food systems over the past decade. Presenting 13 follow-up landmark scientific reports and UN agreements as well as 15 updates and 13 infographics on key emerging trends and topics, the authors take the reader on a journey to the most important developments. They have been personally involved in the making of many of these reports, and they take a look behind the scenes of politics and science.

World Food Prize winner and former co-president of the IAASTD Hans Herren, together with an NGO representative in the IAASTD bureau, food and farming activist Benny Haerlin, convened an IAASTD+10 advisory group of 16 to help edit the book and compile its key messages. “This combination of international views and perspectives is a treasure trove for decision-makers and activists, scholars and practitioners along the food systems chain,” said Benny Haerlin. “It not only talks about transformation, it also shows how it can be done and where it is already happening.”

The book is published in the run-up to this year’s only virtual High Level Special Event of the UN Committee on World Food Security (CFS), where for the first time agroecology will be at the centre of discussions and where decision-makers will also reflect about global efforts needed to “build back better” after COVID-19. “This book clearly proves from various perspectives that the agroecological approach is by far the most important and fundamental pathway to ‘build back better’ and to make the shift towards sustainable food systems,” says Hans Herren. The book is also a critical contribution to the “Food Systems Summit 2021”, being organized under the auspices of the United Nations.

09.09.2020 |

Study shows the potential of agroecology to adapt to climate change

Small farmers from Meru County, Kenya, practicing agroecology (Photo: Peter Lüthi/Biovision)

Agroecology can increase the ability of agricultural systems to adapt to climate change and strengthen their resilience. This is the main finding of a study published in August by the Food and Agriculture Organization of the United Nations (FAO) and Biovision Foundation. The study warns that climate change has negative impacts on food systems and the livelihoods of farmers worldwide, undermining current efforts to improve food security and nutrition. It is increasingly posing problems for farmers in sub-Saharan Africa who are faced with irregular rainy seasons, droughts, storms and floods which destroy their harvests. The authors point out that there is an urgent need for a transformational change of our food systems towards more sustainability and resilience. “The study at hand, mobilizing international and national level assessments and scientific methodologies, provides solid evidence that biodiverse agroecological systems built on local communities increase resilience to climate change,” FAO’s René Castro and Frank Eyhorn, CEO of Biovision Foundation, write in the foreword to the report. “Agroecology is not a silver bullet, but it provides urgently needed impulses and principles to transform food systems in line with the sustainable development goals.”

The research question of the study was: “How can agroecology foster climate change adaptation, mitigation and resilience through practices and policies?” In order to find answers, the authors analysed the international policy arena, in particular in the United Nations Framework Convention on Climate Change, and they conducted a meta-analysis of peer-reviewed scientific studies on agroecology. In addition, they looked at two case studies in Kenya and Senegal that assess both, the policy potential of agroecology and the technical potential of agroecology to foster climate resilience on farm-level in the respective countries. Their main finding from the meta-analysis was that there is robust scientific evidence which demonstrates that agroecological methods including organic farming increase climate resilience. This is because they build on key elements that involve adaptability to climate change. “Agroecology increases the adaptive capacity and reduces the vulnerability of agroecosystems, mainly through improved soil health, biodiversity and high diversification of species and genetic resources within agricultural production systems,” the authors write. For example, agroecological methods increase soil organic matter (carbon sequestration). “Healthy soils are the key to sustainable agriculture and to food systems that can deal with the challenges of climate change and guarantee food security,” said Adrian Müller, co-author of the meta-analysis who works for the Research Institute of Organic Agriculture (FiBL) that also contributed to the study. “Implementing agroecology in practice, and organic farming, results in soil health and therefore deserves comprehensive support.”

The two case studies from Kenya and Senegal also showed that farmers who participated in agroecological projects were able to cope better with the consequences of climate change and ensure their food security. Another finding of the report is that that the interdisciplinary and systemic nature of agroecology is key for its transformational power. But those characteristics also present a challenge: The implementation of agroecological methods is knowledge-intensive, and its promotion in education, extension services and research therefore requires appropriate strategies. However, current laws, policy instruments and strategies are not yet adequate. The authors also provide some recommendations on how to take full advantage of agroecology’s potential. They argue that, given the sound knowledge base, fostering agroecology to build resilience should be recognised as a viable climate change adaptation strategy. Second, they stress the need to address barriers to the scaling-up of agroecology: Improved access to knowledge and understanding of systemic approaches should be fostered across all sectors, stakeholders and scales. “Policies need to provide an enabling environment and a level playing ground for enhancing the adoption of agroecological principles. Evidence-based policy setting is therefore the need of the hour,” Castro and Eyhorn stress in the foreword. In addition, the authors highlight that further comparative research on the multidimensional effects of agroecology is needed. Decisive action is required now. “The decision-makers are now being called upon to set a new course – in the direction of agroecology,” urges Eyhorn. (ab)

22.08.2020 |

Earth Overshoot Day: COVID-19 has reduced our ecological footprint

Humanity has already used up nature’s budget for the entire year (Photo: CC0)

August 22 marks Earth Overshoot Day this year – the day humanity has used up all the resources nature can sustainably supply and renew in a year, according to data from international sustainability organization “Global Footprint Network” and York University in Toronto. For the rest of the year, we will be living on resources borrowed from future generations. COVID-19 has caused our Ecological Footprint to contract, pushing the date of the day back more than three weeks compared to last year, when Earth Overshoot Day fell on July 29th. Over the last years, the date has been creeping up the calendar and this is the first time since 2009 that the date arrived later. However, this does not mean that there is reason to celebrate: “Sustainability requires both ecological balance and people’s well-being ensured over the long-term, therefore this year’s sudden Ecological Footprint contraction cannot be mistaken for progress,” said Global Footprint Network CEO Laurel Hanscom. Although Coronavirus-induced lockdowns caused the global Ecological Footprint to contract by almost 10%, maintaining current levels of resource consumption would require the equivalent of 1.6 Earths. But the unprecedented current disruption provides decision-makers with the challenge and chance of relaunching our economies in a way that allows us to live within the means of our planet.

To determine the date of Earth Overshoot Day for each year, Global Footprint Network calculates the number of days of that year that Earth’s biocapacity suffices to provide for humanity’s Ecological Footprint. This is achieved by contrasting the world’s demand on nature (ecological footprint), including demand for food, timber, fibres (cotton) and space for urban infrastructure with the planet’s ability to replenish resources and absorb waste, including carbon dioxide emissions. Global overshoot began in the early 1970s. Since then, an ecological debt has been accumulated which is equivalent to 18 Earth years. This means that it would take 18 years of our planet’s entire regeneration to reverse the damage from overuse of natural resources, assuming it was fully reversible. But a change of course is possible: “Many solutions exist that can be adopted at the community level or individually to significantly impact the kind of future we invest in, one decision at a time: how we produce the food we eat, how we move around, how we power ourselves, how many children we have, and how much land we protect for wildlife,” says Global Footprint Network. For example, reducing the carbon footprint by 50% would get us from consuming the resources of 1.6 Earths down to 1.1 Earths and move the date of Overshoot Day by 93 days. If we move the date 5 days each year, humanity would be using less than one planet before 2050.

The “Global Footprint Network” has identified five major areas which offer significant opportunities to address ecological overshoot and improve sustainability: cities, energy, food, planet and population. Our food systems are currently using 50% of the planet’s biocapacity. What we eat matters! Diets which help reduce the carbon-intensity of food and the impact of food production on biodiversity are not only healthier but also have a lower ecological impact. The organisation has calculated that a nutritionally balanced, vegetarian diet has an Ecological Footprint that is 2.5 times lower than that of one comprised mainly of animal-based proteins. The Chinese government has committed itself to reducing meat consumption by 50% by 2030. This would reduce the Ecological Footprint by 377 million global hectares and move the date of Overshoot Day back 5 days, including by reducing methane emissions. Reducing food waste in another solution. About one third of the food produced in the world for human consumption still gets lost or wasted. Cutting food waste in half would move Earth Overshoot Day 13 days. “The past does not necessarily determine our future. Our current choices do. Through wise, forward-looking decisions, we can turn around natural resource consumption trends while improving the quality of life for all people,” the network tries to motivate each of us to make an individual contribution in order to move the date. (ab)

06.08.2020 |

Decline in pollinators threatens US crop yields, study

Wild bee species are in decline (Photo: CC0)

Declines in bee populations and other pollinators could negatively affect crop yields in the US, according to new research published in the journal Proceedings of the Royal Society B: Biological Sciences. The study led by Rutgers University researchers found that a lack of pollinators could translate directly into decreased yields of key crops such as apples, cherries and blueberries. “We found that many crops are pollination-limited, meaning crop production would be higher if crop flowers received more pollination,” said senior author Rachael Winfree from the School of Environmental and Biological Sciences at Rutgers University–New Brunswick. “We also found that honey bees and wild bees provided similar amounts of pollination overall,” she added. The authors stress that their study is the first to evaluate the contribution of wild pollinators to crop pollination at the national scale in the US in such a comprehensive way.

The importance of pollinators for crop production is well-known. “Pollination by insects is a critical ecosystem service that is necessary for production of most crops, including those providing essential micronutrients, and is thus essential for food security,” the study notes. In the US alone, the production of pollinator-dependent crops is valued at over $50 billion per year. And recent evidence suggests that both European honeybees and some native wild bee species are declining. The authors highlight, however, that a decline in pollinators will only affect crop yield if yield is limited by a lack of pollination. In order to get more information, the researchers established a nationwide study to assess the extent of pollinator limitation in seven crops at 131 farms across the United States and in British Columbia, Canada. Through this multi-state Integrated Crop Pollination Project, coordinated by Michigan State University, the scientists collected data on insect pollination of crop flowers and yield for apples, highbush blueberries, sweet cherries, tart cherries, almond, watermelon and pumpkin. “For each crop, we selected study farms within economically important areas for the national production of that crop, so these farms were representative of the majority of production in terms of growing conditions, pollinator communities and farm management practices,” they outlined in the study design.

The researchers found that apples, sweet cherries, tart cherries and blueberries showed evidence of being limited by pollination, indicating that yields are currently lower than they could be if pollinators were more abundant. Another finding is that wild bees and honeybees provided comparable amounts of pollination for most crops, even in agriculturally intensive regions. However, the proportion of visits by honeybees or wild bees differed greatly by crop. Wild bees accounted for the largest proportion of pollination visits in pumpkin (74.6%) but did not visit almond trees. The proportion of wild bee visits was higher for cherry and apple than for blueberry. The economic value of honeybees and wild bees was also estimated based on their relative contributions to crop pollination. The researchers estimated the nationwide annual production value of wild pollinators to the seven crops they studied at over $1.5 billion. “At the national level, we estimated the value of wild pollinators to be highest in apple, with a value of $1.06 billion, with significant value also in sweet cherry ($145 million), watermelon ($146 million), pumpkin ($101 million), blueberry ($50 million) and tart cherry ($32 million),” they wrote in the paper. The value of wild bee pollination of all pollinator-dependent crops would be much greater.

The findings of the study suggest that adopting practices that conserve or augment wild bees, such as enhancing habitat to support blooming trees and shrubs and wildflowers, or using managed pollinators other than honey bees, is likely to boost yields. Increasing investment in honey bee colonies is another alternative growers can consider to reduce the risk of limited pollination. “Managing habitat for native bee species and/or stocking more honey bees would boost pollination levels and could increase crop production,” said professor Rachael Winfree. The study also points to the fact that pesticides are a major threat to pollinators. According to data cited in the study, US farms currently spend about $9 billion annually on pesticides and about $23 billion on fertilizer. “In cases where pollination is limiting, there may be little benefit to spending large amounts of money on pest control,” the authors conclude. (ab)

25.07.2020 |

Scientists call for a shift to agroecology in order to protect biodiversity

Agriculture can promote or reduce biodiversity (Photo: CC0)

A shift to sustainable agriculture is needed in order to halt biodiversity loss and restore nature, a team of scientists argues in an article in the journal „Nature Ecology and Evolution“. They call for the integration of agroecological principles in the post-2020 Global Biodiversity Framework (GBF) which will be adopted at the 15th Convention of the Parties (COP15) meeting in China now to be held in 2021 due to the coronavirus pandemic. The biodiversity conference will be discussing targets to reduce threats to biodiversity. The researchers around Dr Thomas Cherico Wanger from Westlake University China and University of Göttingen explain in their article how agroecological principles can help meet these biodiversity targets. “We argue that the GBF must include conservation actions in agricultural landscapes based on agroecological principles (…) in the three ‘2030 Action Targets’ to reach its goals of biodiversity recovery,” they wrote in the journal. “Agroecology is widely recognized as a necessary transformation in order to achieve food system sustainability.” More than 360 scientists from around the world share this view and have signed the article.

The authors first highlight the important role of agriculture, which takes up more than one third of the global landmass and ensures the survival of a growing world population. But agriculture also has its downsides: “Habitat conversion and conventional farming practices – including heavy use of agrochemicals – have negative effects on biodiversity, even spilling into protected areas,” the authors write. Agriculture endangers approximately 62% of all threatened species worldwide. But this does not need to be the case. “Agroecology has the potential to change the way we ‘do agriculture’,” said co-author Professor Teja Tscharntke from the University of Göttingen. If designed appropriately, agricultural landscapes can provide habitats for biodiversity, promote connectivity between protected areas, and increase the capacity of species to respond to environmental threats, the authors stress. “Diversification at the field, farm and landscape scale holds large promises to make food systems more sustainable; however, farmers alone cannot achieve this major transformation. Action is required across the entire supply chain, from the processing industry to distributors to the consumers.”

According to the authors, stopping and reversing the trend in species decline through agroecological production is not only good for biodiversity but also for farmers. Sustainable and diversified farming systems enhance biodiversity, pollination and reduce the impact of pathogens and pests, thus reducing the use of synthetic pesticides, a major cause of biodiversity loss. Farmers benefit from diversified systems through increased economic resilience, reduced dependency on agrochemical inputs, and in subsistence systems more diverse and nutritious foods. The authors are optimistic that the frequently mentioned yield gap between conventional and agroecological production will further diminish through diversification, new varieties and crop combinations. “The importance of agroecology to change agriculture and protect biodiversity has been recognized by many top level organizations, in the scientific community, and by practitioners,” stressed Dr Wanger. The authors especially refer to a recent report of the High-Level Panel of Experts on Food Security and Nutrition (HLPE) of the Committee on World Food Security (CFS), which looked at agroecological and other innovative approaches that can enhance food security and nutrition and help achieve global sustainability goals.

The scientists also highlight the need to promote and adapt the research on agroecology in order to advance sustainable agriculture. They argue that future research on agroecological production needs to depart from traditional research approaches and increasingly engage in multi-stakeholder networks to define options that work in practice and across scales. For example, the participation of indigenous peoples and local communities in decision-making processes should be promoted to incorporate their perspective on and knowledge about agroecological approaches. In addition, policy makers should be supported through easily accessible advisory services to promote change in the wider socioecological landscape, incentivize local innovation systems and increase budget allocations for agroecological transition. The authors write that it is also necessary to enable public and private funding for long-term research programmes which are more apt for the timescales that agroecological interventions operate on. “We hope that our comprehensive research agenda will help to chart the path to sustainable, diversified agriculture and biodiversity conservation in the future,” said Dr Tscharntke. (ab)

13.07.2020 |

World hunger increases for fifth year in a row, UN report

Two billion people do not have access to nutritious food (Photo: CC0)

The number of undernourished people in the world has increased by more than 60 million people since 2014 and countries around the world continue to struggle with multiple forms of malnutrition, warns a report released on Monday by five UN agencies. According to “The State of Food Security and Nutrition in the World”, an estimated 687.8 million people, or almost one in every ten people, were chronically undernourished in 2019, up from 678.1 million in the previous year. This is the fifth increase in a row. If this trend continues, the number of undernourished people will exceed 840 million by 2030 even without the negative effects that COVID-19 will likely have on hunger. The report suggests that the COVID-19 pandemic may add up to 132 million people to the total number of undernourished in the world in 2020 depending on the economic growth scenario. This means that the world is not on track to achieve the second Sustainable Development Goal (SDG2) which aims to end all forms of hunger and malnutrition by 2030. “Beyond hunger, a growing number of people have had to reduce the quantity and quality of the food they consume,” the heads of the UN Food and Agriculture Organisation (FAO), the International Fund for Agricultural Development, UNICEF, the World Food Programme and the World Health Organisation write in their joint foreword to the report. In 2019, 746 million people were facing severe food insecurity and more than 1.25 billion people experienced food insecurity at moderate levels. “This situation could deteriorate if we do not act immediately and boldly,” the UN agencies warn in the foreword.

This year’s figure of almost 690 million undernourished people is much lower than the 821 million people in 2018 from last year’s report. The authors argue that updates for many countries have made it possible to estimate hunger in the world with greater accuracy this year. The current estimate is based on new data on population (2019 revision of the World Population Prospects), food supply and more importantly, new household survey data that enabled the revision of the inequality of food consumption for 13 countries, including China. Revising the undernourishment estimate for China going back to the year 2000 resulted in a significantly lower number of undernourished people worldwide because China has one-fifth of the global population. “While still facing food security and nutrition challenges, China has made impressive economic and social development gains since the last update that were not reflected in previous assessments,” the authors write. Despite the revision, the upwards trend in the number of people affected by hunger globally continues.

The hungry are most numerous in Asia, but the figure is expanding fastest in Africa. Approximately 55.4% of the world’s undernourished people, or 381.1 million people, live in Asia, mostly in southern Asian countries, followed by Africa with 250.3 million (36.4%) and Latin America and the Caribbean with 47.7 million (6.9%). If current trends persist, the distribution of hunger in the world could change substantially, turning Africa into the region with the highest number of undernourished in 2030. By 2030, Africa could be home to 433 million undernourished people, followed by Asia with 329 million. Not only is the number of undernourished people on the rise, but also the share of undernourished people in the total population. The prevalence of undernourishment increased from 8.6% in 2014 to 8.9% of the world population in 2019. Africa remained the region with the highest share (19.1% of the total population). The situation is especially alarming in Eastern Africa, where more than a quarter of the population (27.2%) is undernourished and in Middle Africa, which includes countries such as Chad and Congo, were 29.8% of the population is undernourished. In Asia, 8.3% of the population are affected while the share is 7.4% in Latin America and the Caribbean.

The report also introduces new analysis of the cost and affordability of healthy diets around the world. According to the report, the cost of a healthy diet, which for example includes the consumption of at least 400 g of fruits and vegetables per day, exceeds the international poverty line (established at USD 1.90 purchasing power parity (PPP) per person per day), making it unaffordable for the poor. The price of even the least expensive healthy diet is at five times the price of filling stomachs with starch only. Nutrient-rich dairy, fruits, vegetables and protein-rich foods (plant and animal-sourced) are the most expensive food groups globally. The latest estimates are that a staggering 3 billion people or more cannot afford a healthy diet. In sub-Saharan Africa and southern Asia, this is the case for 57% of the population. But not a single region, not even North America and Europe, is spared. “It is unacceptable that, in a world that produces enough food to feed its entire population, more than 1.5 billion people cannot afford a diet that meets the required levels of essential nutrients and over 3 billion people cannot even afford the cheapest healthy diet. People without access to healthy diets live in all regions of the world; thus, we are facing a global problem that affects us all,” the UN agencies write. The report argues that a global switch to healthy diets would also deliver enormous savings. Such a shift would allow the health costs associated with unhealthy diets, estimated to reach US$ 1.3 trillion a year in 2030, to be almost entirely offset; while the diet-related social cost of greenhouse gas emissions, estimated at US$ 1.7 trillion, could be cut by up to three-quarters. (ab)

26.06.2020 |

HLPE calls for policy shifts to radically transform food systems

Food systems need to change (Photo: CC0)

A radical transformations of food systems is needed in order to achieve food security and nutrition for all, a new report finds. According to the High Level Panel of Experts on Food Security and Nutrition (HLPE), the science-policy interface of FAO’s Committee on World Food Security (CFS), the COVID-19 pandemic has revealed and exacerbated the challenges that food systems were already facing and made it obvious that the global community is falling short on Agenda 2030’s Sustainable Development Goals (SDG), especially on ending hunger and malnutrition in all its forms (SDG 2). “We are currently not on track to deliver against SDG2 by 2030,” said Martin Cole, Chairperson of the HLPE Steering Committee during the online launch of the report. “The next decade must focus on accelerating the implementation of policies and innovative solutions, if we are to ensure global food and nutritional security for future generations,” Cole added. The report first looks at concepts and frameworks around food security and nutrition, analyses current trends, challenges and potential opportunities in food systems and recommends promising policy directions that are vital for meeting SDG2.

The first chapter updates conceptual and policy frameworks. Understandings of the concept of food security have changed and evolved in important ways over the past 50 years, the authors explain. The most widely used definition of the concept today is: “Food security exists when all people, at all times, have physical, social and economic access to sufficient, safe and nutritious food which meets their dietary needs and food preferences for an active and healthy life.” This definition features four dimensions that have been seen as central pillars to the concept over the past decades: Availability of food, access to food, utilization (referring to nutritional uptake) and stability (referring to the constancy of the other three dimensions). “Although the above four dimensions of food security remain central to the concept, they still miss some elements that have come to be seen as essential for transforming food systems in the direction needed to meet the SDGs,” the authors write. They call for agency and sustainability to be elevated as key dimensions of food security. Agency refers to the capacity of individuals or groups to make their own decisions about what foods they eat, what foods they produce and how that food is produced, processed and distributed within food systems. It also refers to their ability to engage in processes that shape food system policies and governance. Sustainability refers to the long-term ability of food systems to provide food security and nutrition in a way that does not compromise the economic, social and environmental bases for future generations.

The second chapter addresses current trends and challenges with regard to food systems. Progress on SDG2 has been uneven. The number of people suffering from hunger in recent years has increased. More than 820 million people in the world are chronically undernourished and the COVID-19 crisis has exacerbated the situation. Some 1.9 billion adults around the world are overweight, and about one-third of those people or 650 million people are obese. At the same time, approximately 1.5 billion people suffer from one or more forms of micronutrient deficiency, for example a lack of vitamin A or iron. In addition, food environments in different contexts are deteriorating and food safety is an ongoing concern. Food system livelihoods also continue to be precarious for many of the world’s most vulnerable and marginalized people and there are wide differences in productivity. The report also points to the fact that there are enormous external costs linked to the way food systems currently operate and food systems have crossed several of the “planetary boundaries” that establish a safe operating space for humanity to ensure long term sustainability.

The report recommends four policy shifts to achieve more sustainable food systems and thus SDG2. First, the most promising policies support radical transformations of food systems. According to the authors, “policies that promote a radical transformation of food systems need to be empowering, equitable, regenerative, productive, prosperous and must boldly reshape the underlying principles from production to consumption.” They point out that such policies empower the most vulnerable and marginalized food system actors, promote regenerative production practices, such as agroecology, and support the development of diverse distribution networks, such as territorial markets, which help to overcome economic and sociocultural challenges such as uneven trade, concentrated markets and persistent inequalities by supporting diverse and equitable markets that are more resilient. Second, policies that appreciate the interconnectedness of different systems and sectors are required to ensure more regenerative, productive and resilient food systems. The authors argue that initiatives and policies that build on lessons about inter-system connections from past crises, or current such as the COVID-19 pandemic, are also important.

Thirdly, the report calls for policies which have a broader understanding of hunger and malnutrition. Policies that address hunger and all forms of malnutrition require food systems that are equitable, empowering, sustainable, healthy and nutritious. The report finds that policies in this area support nutrition-driven agricultural production, food environments to encourage healthy diets and the availability of diverse, local fruits and vegetables. Other policies improve nutrition, including infant and child nutrition, and are aimed at improving rates of exclusive breastfeeding up to six months of age. Measures that address specific forms of malnutrition are also important, especially for the most marginalized populations. Fourth, the HLPE calls for policies that develop context-specific solutions, taking local conditions and knowledge into account, in order to achieve more resilient, productive and empowering food systems. “Measures must tackle the distinct challenges that arise in diverse types of rural and urban contexts, including support for small-scale farming systems as well as support for access to healthy foods in urban areas that link up with small-scale producers in rural areas.” HLPE’s “theory of change” is that the four critical policy shifts together work to bring about more sustainable food systems that support the six dimensions of food security and ultimately support the realization of the right to food and the achievement of the SDGs. (ab)

11.06.2020 |

Report calls for shift to agroecological research in Africa

Farmers, extension workers and researchers in Mozambique (Photo: Julio Onofre Rainde,,

Only a fraction of agricultural research funding in Africa is being used to support sustainable agricultural practices, while the majority of funding still goes to industrial agriculture. This is the message of a new report published by Biovision, IPES-Food and the Institute of Development Studies on June 10. The authors argue that around the world, farms, communities and regions are engaging in agroecological transitions, and delivering impressive results. Agroecology combines different plants and animals, and uses natural synergies – not synthetic chemicals – to regenerate soils, fertilize crops, and fight pests. The report estimates that around 30% of farms worldwide have redesigned their production systems around agroecological principles. However, this has not yet translated into a meaningful shift in funding flows that go to sub-Saharan Africa. Investments by philanthropic foundations such as the Bill & Melinda Gates Foundation and major donor countries still reinforce the status quo in agricultural research, the report finds. “Most governments, both in developing and developed countries still favour ‘green revolution’ approaches, with the belief that industrial agriculture is the only way to produce sufficient food,” said Biovision president Hans Herren. “The same goes for the Gates Foundation and its development agency AGRA. But these approaches have failed. They have failed ecosystems, farming communities, and an entire continent,” Herren added.

The report found that as many as 85% of projects funded by the Gates Foundation, the world’s biggest philanthropic investor in agri-development, are limited to developing industrial agriculture, or increasing its efficiency. This was via targeted approaches such as more efficient use of water, pesticides, livestock vaccines, fertilisers or reductions in postharvest losses. Only 3% of Gates-funded projects in Africa included elements of agroecosystem redesign. In Kenya, one of Africa’s leading recipients of agricultural research money, more than 70% of projects carried out by research institutes were limited to supporting industrial agriculture and/or increasing its efficiency. “A Green Revolution narrative dominates in Kenya, leading to an emphasis on efficiency and markets rather than ecological sustainability, equity and well-being,” according to the report. But at least 13% of projects by Kenyan research institutes are agroecological and another 13% focus on replacing synthetic inputs with organic alternatives. The good news is that 51% of Swiss-funded agricultural research projects had agroecological components, and 41% of those projects also included aspects of socioeconomic and political change like decent working conditions and gender equality. Only 13% of the projects funded by the Swiss focused only on industrial agriculture and efficiency-based approaches. But there is still much room for improvement because even the better-performing Swiss programmes lacked truly systemic approaches. The authors highlight that individual components of agroecology (e.g. agroforestry, complex crop rotations) tended to be addressed in isolation.

The report calls for a meaningful shift in funding flows and argues that change can’t come soon enough. “With the compound challenges of climate change, pressure on land and water, food-induced health problems and pandemics such as COVID, we need change now. And this starts with money flowing into agroecology,” says Herren. This view is supported by Olivia Yambi, co-chair of IPES-Food, an independent expert panel that works towards the transition to sustainable food systems worldwide. “We need to change funding flows and unequal power relations. It’s clear that in Africa as elsewhere, vested interests are propping up agricultural practices based on an obsession with technological fixes that is damaging soils and livelihoods, and creating a dependency on the world’s biggest agri-businesses. Agroecology offers a way out of that vicious cycle,” Yambi said.

The report also includes a series of recommendations for bilateral donors, philanthropic funders and scientific research institutes which want to advance agroecological research in sub-Saharan Africa and beyond. The first recommendation is to focus on operational elements of agroecology as a first step in a well-sequenced strategy for transformation. The authors recommend a focus on core practices and principles (e.g. closing natural resource cycles, agroforestry, inter-cropping and crop rotation, push-pull technology, system of rice intensification) to introduce agroecology to new actors. They call on donors to shift towards long-term, pooled funding models; including the removal of obstacles to funding subsequent phases of the same project or programme. The authors stress the need to co-design projects with farmers and communities and increase the share of funding going to African organisations. “Support the development and functioning of bottom-up alliances with the involvement and ownership of farmers’ groups, researchers, NGOs and social movements; use these alliances as a key partner in knowledge generation and sharing,” they write in the executive summary. Another recommendation is to introduce agroecology to research and training institutes by developing agroecological curricula at colleges and universities and launch a network of decentralised centres of excellence on agroecology in sub-Saharan Africa. (ab)


Donors of globalagriculture Bread for all biovision Bread for the World Misereor Heidehof Stiftung Hilfswerk der Evangelischen Kirchen Schweiz Rapunzel
English versionDeutsche VersionDeutsche Version